A Convolutional Neural Network for Modelling Sentences
使用DCNN对语言进行建模
概述
使用CNN进行语言建模已经取得了较广泛的应用。本文作者提出了一个动态卷积网络DCNN,这是一个针对卷积神经网络的扩展,不需要依赖语法树,并且作者提出了许多比较新颖的概念,比如宽卷积、动态k-max pooling,这些特性使得DCNN可以捕获长短依赖,并且丰富了DCNN提取的特征。
A Convolutional Neural Network for Modelling Sentences
使用DCNN对语言进行建模
使用CNN进行语言建模已经取得了较广泛的应用。本文作者提出了一个动态卷积网络DCNN,这是一个针对卷积神经网络的扩展,不需要依赖语法树,并且作者提出了许多比较新颖的概念,比如宽卷积、动态k-max pooling,这些特性使得DCNN可以捕获长短依赖,并且丰富了DCNN提取的特征。
Convolutional Neural Networks for NLP Classification
今天的论文来自于较老的几篇论文,使用CNN进行文本分类。
CNN最早被成功运用在图像处理中,因为图像的位置不变性、大小不变性使得CNN处理图像再适合不过。而将CNN运用于文本分类流行于2014-2015年左右,大概处于在NLP被RNN统治的前几年,因此虽然这些论文年代已经相对比较久远,但仍然值得一读,因为通过对这些论文的阅读,还能大致了解为什么CNN在NLP领域也能取得成功,CNN在NLP领域存在什么问题,以及在NLP领域CNN的使用是如何慢慢过渡到RNN的使用的。